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Fantastic Data

Web Database System

• Automatically establish redundant data caches throughout the
network based on
– data usage patterns, transactions and queries
– optimize cost function based on power consumption, latency, and

survivability
– no permanent storage

• Disseminate data and maintain redundant caches
– reliable delivery on top of an unreliable channel
– retries mitigated by

• data expiration
• obsolescence detection
• priority

– supports dynamic filter changes
– cooperative repair
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Schedule
                                                                             1  2  3  4  5  6  7  8  9 10 11 12  1  2  3  4  5  6  7  8  9 10 11 12  1  2  3  4  5  6  7  8  9 10 11 12

  Task 1. Prototype Development

    System development, version 1

    Data Collector Development

    Partition Optimizer R+D

    Partition Visualization Development

    System integration, version 2

    System refinement, version 3

  Task 2. Experiments

    Test Protocol Development

    Single Input Tests

    Large Network Test with Mix of Inputs

    Integrated Tests

  Task 3. Coordination and Reports

    Quarterly Progress Report

    Semi-Annual PI meeting

    System Demonstration

now

We’d like to pull this date earlier.
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Fantastic Data

Major focus of last period

• Preparing to support experiments on the SensIT nodes
• Implementation of the in-memory cache

– higher speed, smaller code size
– allows easy creation of special data types, analysis functions
– better integration of consistency bookkeeping fields with regular

data fields
– implemented distributed table creation

• Establish API
– reduce complexity

• eliminate features we don’t really want to support
– streamline the socket interface
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Determining dissemination filters

• Persistent queries from application programs are used to
determine dissemination filters
– easy to “or” each application filter together
– want to reduce composite condition complexity
– dissemination filters are evaluated on every record change
– reducing complexity is good, maybe even if it increases the data load

• (a>=25 & a<=45) | (a>=30 & a<=50) is clearly equivalent to (a>=25 and
a<=50), but what about

• (power>=3.0 & lat>=39.345678 & lon>=-120.342780 & lat<=39.346001 &
lon<=-120.342678 & _t>=900000000.0) | (power>=2.7 & lat>=39.345670 &
lon>=-120.342778 & lat<=39.346000 & lon<=-120.342676)

– clustering code has been developed, needs to be integrated
• Need to factor in 1-time queries

– how often are they done?
– how closely do they match the persistent queries?
– how large is the remote load required to satisfy the query?
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Fantastic Data

Partition Determination
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Very near term plans

• Finish version 1
– add single precision float data type
– add some functions in where clause evaluator

• min, max, mean, abs, sin, cos, tan, atan, exp, log, sqrt, …
– descriptive error codes
– testing and packaging

• Need to select a distribution method that can be easily used by
others and can simulate need for multihop
– suggest broadcast to different UDP ports

• each server broadcasts to a particular port
• each server reads from whichever set of ports represent its neighbors

• Deliver to BBN and BAE about June 2001
– Wider distribution later
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Fantastic Data

Near term plans (next 6 months)

• Support use of system
– either in operational demo, or
– in field/lab demos as appropriate

• Integrate dynamic filter support into production version
– code exists in larger, slower disk-resident version

• Improve filtering performance
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Longer term plan (6 months +)

• Support additional users
• Implement configuration options

– data criticality
– latency requirements
– excess data holdback (don’t need it more frequently than ...)

• Investigate relationship of Fantastic Data caches to ISI routing
– Should we place a filtering module inside the routing layer?
– What are the similarities/differences between our filtering approach

and ISI’s.
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2 potentially different filtering problems

• Dense, connected interests
• Well served by local broadcast

– flooding can be mitigated by
knowledge of link state

• Data dissemination decision  made
by knowledge of neighbors’ interest
– can be approximated by own

• Is this the results formation
problem?

• Sparse, disjoint interests
• Routing required
• Data moves across network through

many uninterested nodes
• Is this the results extraction

problem?
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Fantastic Data

Clustering
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• locally determined
– not globally optimized
– minimize interaction between nodes required to setup filters

• incremental
– try to disturb existing situation as little as possible

• filter tolerance
– a little too big, a little too small, that’s ok

• maintain cluster quality information
– mean coverage of individual needs (percent, record count,

bandwidth)
– excess coverage (percent, record count, bandwidth)
– number of members in group
– mean age of member’s input data (seconds)

Clustering philosophy
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• Individual rules
– specific value, integer or character

• mode=‘acoustic’
• type=‘tank’
• code=347

– range of values (allow 1 side to be unbounded), integer or float
• value>=3 and value<=14
• snr>=3.5
• power>=0.0 and power<=10.0

– area, integer or float
• latitude>=39.342893 and latitude<=39.358214 and longitude>=-120.451740

and longitude<=-120.430266

• Combination rules
– “and” and “or”

• mode=‘acoustic’ and snr>3.5 and
(latitude>=39.342893 and latitude<=39.358214 and
longitude>=-120.451740 and longitude<=-120.430266)

Automatic clustering rules
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Detection and Tracking Example
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Interface options

• Communicate over your own socket
– open connection to TCP localhost:TBD or local domain /tmp/.fdb
– send requests

• [id] [statement];
• where [id] is a unique integer and [statement] is any valid statement
• new line characters may be embedded in the statement
• it must end with a semi-colon followed by a new line character

– cache responds with
• [id] [status] [data]

• Use our C library functions
– library creates and manages the socket communications
– library provides callback functions when data arrives
– library provides an event loop or you can use your own

• call library function when there is activity on the socket
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Fantastic Data

Cache: How to use

• Create the tables you need
– another application or another node may have already done it
– but doing it twice does no harm

• unless you are first and you get it wrong

• Perform queries for configuration information
– for example, to find out the capabilities of the node

• Perform watch operations to monitor the data you need
– data is provided as it changes

• you get the data before the other application gets confirmation
– watch operations are the primary determinant of distribution filters

• Sit back and relax
– data will come to you

• Wake up
–  process the incoming data
–  create some new data of your own



6 Oct 00 17 207 Prospect Avenue, San Francisco, California 94110, USA  •   (415) 643-9555  •   (415) 643-9554  •   www.fandat.com

Fantastic Data

API: Communicating with the server

/*
 * Connect to the server. This is automatically done by CachePerform()
 * if you don't do it first. If a function is provided it is called
 * whenever the connection status changes.
 *
 * If socket>=0, the connection is up and this is the socket number.
 * You may use this in select() or poll().
 * If socket<0, the connection is down, and this is an error code.
 *
 * If the connection should fail, it is automatically restored and
 * any operations in progress are automatically resubmitted unless
 * CacheDisconnect() is called.
 */
extern int CacheConnect(void (*function)(int socket));

/*
 * Disconnect from the server. If a function was provided to CacheConnect(),
 * it is called when the connnection status changes.
 */
extern void CacheDisconnect();
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API: performing an operation

/*
 * Ask to have an operation performed. Automatically connects
 * to the server if that has not already been done.
 *
 * Returns code assigned to this operation. Code is a positive integer.
 * A negative return indicates an error.
 *
 * Callback function is called once for each row (status>0), error (status<0),
 * and when done (status==0).
 */
extern int CachePerform(char *statement,
    void (*function)(void *ptr, void *arg), void *arg);
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API: Statements that maintain tables

/*
 * Statements may be any of the following:
 *    CREATE TABLE table (field type, ... , field type, PRIMARY(field list));
 *        Create a new table. The primary key is required.
 *    DROP TABLE table;
 *        Delete a table and all of its contents.
 *    DESCRIBE TABLE table;
 *        Return the specification of a table.
 */
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API: Statements that change data

/*
 * Statements may be any of the following:
 *    INSERT INTO table field list VALUES value list;
 *        Insert a row into the table. The row must not exist.
 *    PUT INTO table field list VALUES value list;
 *        Insert a row into the table. If the row already exists, this
 *        operation is treated as the equivalent update.
 *    UPDATE table SET field list = value list WHERE condition;
 *        Update all existing rows of the table that meet the condition.
 *    DELETE FROM table WHERE condition;
 *        Delete all existing rows that meet the condition. Caution: if no
 *        condition is specified, deletes all rows of the table.
 *    UNDELETE FROM table WHERE condition;
 *        Restore all deleted rows that meet the condition.
 *    PURGE FROM table WHERE condition;
 *        Permanently removes all rows of the table that meet the condition.
 *        Caution: The presence of deleted data is necessary to ensure
 *        consistency of the redundant caches. Data should be purged only
 *        if some other mechanism makes sure that all nodes purge the same
 *        data at the same time. For example, a data expiration feature
 *        based on time of day and time of data creation is safe.
 */
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Fantastic Data

API: Statements that query data

/*
 * Statements may be any of the following:
 *    SELECT field list FROM table WHERE condition;
 *        Return the rows of the table that match the condition.
 *    WATCH field list FROM table WHERE condition;
 *        Return the rows of the table that match the condition as they are
 *        inserted, updated, or deleted.
 *    SELECT AND WATCH field list FROM table WHERE condition;
 *        Do both select and watch operations. Guaranteed to return all of
 *        the existing rows before any changes and to not miss any changes.
 *    CANCEL operation;
 *        Cancel a previously specified operation, for example, an
 *        ongoing watch operation.
 */
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API: Interpreting the results

/*
 * Returns the operation code associated with the given result pointer.
 * Returns a negative error code if something is wrong.
 */
extern int CacheResultCode(void *ptr);

/*
 * Returns the status associated with the given result pointer.
 * See enum CacheStatus. 0 means the operation is done.
 * A positive status means that there is valid data.
 * A negative return is an error.
 */
extern int CacheResultStatus(void *ptr);

/*
 * Return the number of rows changed or returned by the operation.
 * A negative return is an error code.
 */
extern int CacheResultImpact(void *ptr);
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Fantastic Data

API: Interpreting the results

/*
 * Returns a pointer to the data associated with the result pointer.
 * If the result status is positive, this is the row data in text form.
 * If the result status is negative, this is an error message.
 * Returns 0 if there is something wrong.
 */
extern char *CacheResultMessage(void *ptr);

/*
 * Returns the number of fields in the result. Valid only if the
 * associated operation was a query.
 *
 * A negative return is an error code.
 */
extern int CacheResultNvalue(void *ptr);

/*
 * Returns the value of the specified field in the specified result
 * in text form.
 * Returns 0 if there is something wrong.
 */
extern char *CacheResultValue(void *ptr, int it);



6 Oct 00 24 207 Prospect Avenue, San Francisco, California 94110, USA  •   (415) 643-9555  •   (415) 643-9554  •   www.fandat.com
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API: data field types

/*
 * Data types include:
 *    integer (32 bits),
 *    short (16 bits),
 *    byte (8 bits),
 *    char (variable length),
 *    double (64 bits),
 *    blob (variable length, uninterpreted binary data).
 */
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API: where clauses

/*
 * Conditions may be composed of any field, constants, and the operators
 *
 *     +, -, *, /, &, |, !, ^, * <, <=, =, >=, >, !=.
 *
 * The absence of a WHERE clause is interpreted as whatever portion of
 * the table is maintained on the local node. This is not the same as
 * all data in the table throughout the system.
 *
 * Where clauses on queries (especially watch queries) are the major
 * determinant of data distribution filters.
 */
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API: special data fields

/*
 * All tables are automatically supplied with several special fields. The
 * values of these fields may not be set with insert, update, or put
 * statements, but they may be returned by queries and used in conditions.
 * The special fields are the following:
 *    _b integer, the node that changed the record.
 *    _s integer, the series of the record change.
 *    _n integer, the sequence number of the record change.
 *    _t double, the time at which the record change was originated.
 *    _pb integer, the node that previously changed the record.
 *    _ps integer, the series of the previous record change.
 *    _pn integer, the sequence number of the previous record change.
 *    _pt double, the time at which the previous record change was originated.
 *    _lt double, the time at which the record change was performed on
 *        the local node.
 */



6 Oct 00 27 207 Prospect Avenue, San Francisco, California 94110, USA  •   (415) 643-9555  •   (415) 643-9554  •   www.fandat.com

Fantastic Data

Common Table Definitions

• Location of nodes
create table node (id integer, latitude double, longitude double,

primary(id));
• Capabilities of nodes

create table capability (id integer, type char, …, primary(id));
• Detections

create table detection (id integer, latitude double, longitude double,
start integer, end integer, cpa integer, power double, primary(id));

• Tracks
create table track (id integer, type char, latitude double, longitude

double, confidence double, primary(id));
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