
 207 Prospect Avenue, San Francisco, California 94110, USA • (415) 643-9555 • (415) 643-9554 • www.fandat.com

Fantastic Data

Efficient Data Dissemination
through a

Storageless Web Database

Thomas Hammel

prepared for DARPA SensIT Workshop
19 April 2001

6 Oct 00 2 207 Prospect Avenue, San Francisco, California 94110, USA • (415) 643-9555 • (415) 643-9554 • www.fandat.com

Fantastic Data

Web Database System

• Automatically establish redundant data caches throughout the
network based on
– data usage patterns, transactions and queries
– optimize cost function based on power consumption, latency, and

survivability
– no permanent storage

• Disseminate data and maintain redundant caches
– reliable delivery on top of an unreliable channel
– retries mitigated by

• data expiration
• obsolescence detection
• priority

– supports dynamic filter changes
– cooperative repair

6 Oct 00 3 207 Prospect Avenue, San Francisco, California 94110, USA • (415) 643-9555 • (415) 643-9554 • www.fandat.com

Fantastic Data

Schedule
 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

 Task 1. Prototype Development

 System development, version 1

 Data Collector Development

 Partition Optimizer R+D

 Partition Visualization Development

 System integration, version 2

 System refinement, version 3

 Task 2. Experiments

 Test Protocol Development

 Single Input Tests

 Large Network Test with Mix of Inputs

 Integrated Tests

 Task 3. Coordination and Reports

 Quarterly Progress Report

 Semi-Annual PI meeting

 System Demonstration

now

We’d like to pull this date earlier.

6 Oct 00 4 207 Prospect Avenue, San Francisco, California 94110, USA • (415) 643-9555 • (415) 643-9554 • www.fandat.com

Fantastic Data

Major focus of last period

• Preparing to support experiments on the SensIT nodes
• Implementation of the in-memory cache

– higher speed, smaller code size
– allows easy creation of special data types, analysis functions
– better integration of consistency bookkeeping fields with regular

data fields
– implemented distributed table creation

• Establish API
– reduce complexity

• eliminate features we don’t really want to support
– streamline the socket interface

6 Oct 00 5 207 Prospect Avenue, San Francisco, California 94110, USA • (415) 643-9555 • (415) 643-9554 • www.fandat.com

Fantastic Data

Determining dissemination filters

• Persistent queries from application programs are used to
determine dissemination filters
– easy to “or” each application filter together
– want to reduce composite condition complexity
– dissemination filters are evaluated on every record change
– reducing complexity is good, maybe even if it increases the data load

• (a>=25 & a<=45) | (a>=30 & a<=50) is clearly equivalent to (a>=25 and
a<=50), but what about

• (power>=3.0 & lat>=39.345678 & lon>=-120.342780 & lat<=39.346001 &
lon<=-120.342678 & _t>=900000000.0) | (power>=2.7 & lat>=39.345670 &
lon>=-120.342778 & lat<=39.346000 & lon<=-120.342676)

– clustering code has been developed, needs to be integrated
• Need to factor in 1-time queries

– how often are they done?
– how closely do they match the persistent queries?
– how large is the remote load required to satisfy the query?

6 Oct 00 6 207 Prospect Avenue, San Francisco, California 94110, USA • (415) 643-9555 • (415) 643-9554 • www.fandat.com

Fantastic Data

Partition Determination

Group Clusterer

Needs Determiner

Data Replicator

Group
Membership
Filter Rule

Individual Rule

Query Statistics

Transaction Statistics

Usage Collector

Optimizer
Storage Cost

Transmission Cost
Survivability

Partition Plan

Group Limits

Individual Limits

6 Oct 00 7 207 Prospect Avenue, San Francisco, California 94110, USA • (415) 643-9555 • (415) 643-9554 • www.fandat.com

Fantastic Data

Very near term plans

• Finish version 1
– add single precision float data type
– add some functions in where clause evaluator

• min, max, mean, abs, sin, cos, tan, atan, exp, log, sqrt, …
– descriptive error codes
– testing and packaging

• Need to select a distribution method that can be easily used by
others and can simulate need for multihop
– suggest broadcast to different UDP ports

• each server broadcasts to a particular port
• each server reads from whichever set of ports represent its neighbors

• Deliver to BBN and BAE about June 2001
– Wider distribution later

6 Oct 00 8 207 Prospect Avenue, San Francisco, California 94110, USA • (415) 643-9555 • (415) 643-9554 • www.fandat.com

Fantastic Data

Near term plans (next 6 months)

• Support use of system
– either in operational demo, or
– in field/lab demos as appropriate

• Integrate dynamic filter support into production version
– code exists in larger, slower disk-resident version

• Improve filtering performance

6 Oct 00 9 207 Prospect Avenue, San Francisco, California 94110, USA • (415) 643-9555 • (415) 643-9554 • www.fandat.com

Fantastic Data

Longer term plan (6 months +)

• Support additional users
• Implement configuration options

– data criticality
– latency requirements
– excess data holdback (don’t need it more frequently than ...)

• Investigate relationship of Fantastic Data caches to ISI routing
– Should we place a filtering module inside the routing layer?
– What are the similarities/differences between our filtering approach

and ISI’s.

6 Oct 00 10 207 Prospect Avenue, San Francisco, California 94110, USA • (415) 643-9555 • (415) 643-9554 • www.fandat.com

Fantastic Data

2 potentially different filtering problems

• Dense, connected interests
• Well served by local broadcast

– flooding can be mitigated by
knowledge of link state

• Data dissemination decision made
by knowledge of neighbors’ interest
– can be approximated by own

• Is this the results formation
problem?

• Sparse, disjoint interests
• Routing required
• Data moves across network through

many uninterested nodes
• Is this the results extraction

problem?

6 Oct 00 11 207 Prospect Avenue, San Francisco, California 94110, USA • (415) 643-9555 • (415) 643-9554 • www.fandat.com

Fantastic Data

Clustering

6 Oct 00 12 207 Prospect Avenue, San Francisco, California 94110, USA • (415) 643-9555 • (415) 643-9554 • www.fandat.com

Fantastic Data

• locally determined
– not globally optimized
– minimize interaction between nodes required to setup filters

• incremental
– try to disturb existing situation as little as possible

• filter tolerance
– a little too big, a little too small, that’s ok

• maintain cluster quality information
– mean coverage of individual needs (percent, record count,

bandwidth)
– excess coverage (percent, record count, bandwidth)
– number of members in group
– mean age of member’s input data (seconds)

Clustering philosophy

6 Oct 00 13 207 Prospect Avenue, San Francisco, California 94110, USA • (415) 643-9555 • (415) 643-9554 • www.fandat.com

Fantastic Data

• Individual rules
– specific value, integer or character

• mode=‘acoustic’
• type=‘tank’
• code=347

– range of values (allow 1 side to be unbounded), integer or float
• value>=3 and value<=14
• snr>=3.5
• power>=0.0 and power<=10.0

– area, integer or float
• latitude>=39.342893 and latitude<=39.358214 and longitude>=-120.451740

and longitude<=-120.430266

• Combination rules
– “and” and “or”

• mode=‘acoustic’ and snr>3.5 and
(latitude>=39.342893 and latitude<=39.358214 and
longitude>=-120.451740 and longitude<=-120.430266)

Automatic clustering rules

6 Oct 00 14 207 Prospect Avenue, San Francisco, California 94110, USA • (415) 643-9555 • (415) 643-9554 • www.fandat.com

Fantastic Data

Detection and Tracking Example

Track
Cache

Query
Proxy

Detector Detection
Cache

Tracker

Track
Cache

Query
Proxy

Detector Detection
Cache

Tracker

detection
filter

track
filter

Track
Cache

Query
Proxy

Detector Detection
Cache

Tracker

detection
filter

track
filter

detection
filter

track
filter

Node 1

Node 2

Node N

6 Oct 00 15 207 Prospect Avenue, San Francisco, California 94110, USA • (415) 643-9555 • (415) 643-9554 • www.fandat.com

Fantastic Data

Interface options

• Communicate over your own socket
– open connection to TCP localhost:TBD or local domain /tmp/.fdb
– send requests

• [id] [statement];
• where [id] is a unique integer and [statement] is any valid statement
• new line characters may be embedded in the statement
• it must end with a semi-colon followed by a new line character

– cache responds with
• [id] [status] [data]

• Use our C library functions
– library creates and manages the socket communications
– library provides callback functions when data arrives
– library provides an event loop or you can use your own

• call library function when there is activity on the socket

6 Oct 00 16 207 Prospect Avenue, San Francisco, California 94110, USA • (415) 643-9555 • (415) 643-9554 • www.fandat.com

Fantastic Data

Cache: How to use

• Create the tables you need
– another application or another node may have already done it
– but doing it twice does no harm

• unless you are first and you get it wrong

• Perform queries for configuration information
– for example, to find out the capabilities of the node

• Perform watch operations to monitor the data you need
– data is provided as it changes

• you get the data before the other application gets confirmation
– watch operations are the primary determinant of distribution filters

• Sit back and relax
– data will come to you

• Wake up
– process the incoming data
– create some new data of your own

6 Oct 00 17 207 Prospect Avenue, San Francisco, California 94110, USA • (415) 643-9555 • (415) 643-9554 • www.fandat.com

Fantastic Data

API: Communicating with the server

/*
 * Connect to the server. This is automatically done by CachePerform()
 * if you don't do it first. If a function is provided it is called
 * whenever the connection status changes.
 *
 * If socket>=0, the connection is up and this is the socket number.
 * You may use this in select() or poll().
 * If socket<0, the connection is down, and this is an error code.
 *
 * If the connection should fail, it is automatically restored and
 * any operations in progress are automatically resubmitted unless
 * CacheDisconnect() is called.
 */
extern int CacheConnect(void (*function)(int socket));

/*
 * Disconnect from the server. If a function was provided to CacheConnect(),
 * it is called when the connnection status changes.
 */
extern void CacheDisconnect();

6 Oct 00 18 207 Prospect Avenue, San Francisco, California 94110, USA • (415) 643-9555 • (415) 643-9554 • www.fandat.com

Fantastic Data

API: performing an operation

/*
 * Ask to have an operation performed. Automatically connects
 * to the server if that has not already been done.
 *
 * Returns code assigned to this operation. Code is a positive integer.
 * A negative return indicates an error.
 *
 * Callback function is called once for each row (status>0), error (status<0),
 * and when done (status==0).
 */
extern int CachePerform(char *statement,
 void (*function)(void *ptr, void *arg), void *arg);

6 Oct 00 19 207 Prospect Avenue, San Francisco, California 94110, USA • (415) 643-9555 • (415) 643-9554 • www.fandat.com

Fantastic Data

API: Statements that maintain tables

/*
 * Statements may be any of the following:
 * CREATE TABLE table (field type, ... , field type, PRIMARY(field list));
 * Create a new table. The primary key is required.
 * DROP TABLE table;
 * Delete a table and all of its contents.
 * DESCRIBE TABLE table;
 * Return the specification of a table.
 */

6 Oct 00 20 207 Prospect Avenue, San Francisco, California 94110, USA • (415) 643-9555 • (415) 643-9554 • www.fandat.com

Fantastic Data

API: Statements that change data

/*
 * Statements may be any of the following:
 * INSERT INTO table field list VALUES value list;
 * Insert a row into the table. The row must not exist.
 * PUT INTO table field list VALUES value list;
 * Insert a row into the table. If the row already exists, this
 * operation is treated as the equivalent update.
 * UPDATE table SET field list = value list WHERE condition;
 * Update all existing rows of the table that meet the condition.
 * DELETE FROM table WHERE condition;
 * Delete all existing rows that meet the condition. Caution: if no
 * condition is specified, deletes all rows of the table.
 * UNDELETE FROM table WHERE condition;
 * Restore all deleted rows that meet the condition.
 * PURGE FROM table WHERE condition;
 * Permanently removes all rows of the table that meet the condition.
 * Caution: The presence of deleted data is necessary to ensure
 * consistency of the redundant caches. Data should be purged only
 * if some other mechanism makes sure that all nodes purge the same
 * data at the same time. For example, a data expiration feature
 * based on time of day and time of data creation is safe.
 */

6 Oct 00 21 207 Prospect Avenue, San Francisco, California 94110, USA • (415) 643-9555 • (415) 643-9554 • www.fandat.com

Fantastic Data

API: Statements that query data

/*
 * Statements may be any of the following:
 * SELECT field list FROM table WHERE condition;
 * Return the rows of the table that match the condition.
 * WATCH field list FROM table WHERE condition;
 * Return the rows of the table that match the condition as they are
 * inserted, updated, or deleted.
 * SELECT AND WATCH field list FROM table WHERE condition;
 * Do both select and watch operations. Guaranteed to return all of
 * the existing rows before any changes and to not miss any changes.
 * CANCEL operation;
 * Cancel a previously specified operation, for example, an
 * ongoing watch operation.
 */

6 Oct 00 22 207 Prospect Avenue, San Francisco, California 94110, USA • (415) 643-9555 • (415) 643-9554 • www.fandat.com

Fantastic Data

API: Interpreting the results

/*
 * Returns the operation code associated with the given result pointer.
 * Returns a negative error code if something is wrong.
 */
extern int CacheResultCode(void *ptr);

/*
 * Returns the status associated with the given result pointer.
 * See enum CacheStatus. 0 means the operation is done.
 * A positive status means that there is valid data.
 * A negative return is an error.
 */
extern int CacheResultStatus(void *ptr);

/*
 * Return the number of rows changed or returned by the operation.
 * A negative return is an error code.
 */
extern int CacheResultImpact(void *ptr);

6 Oct 00 23 207 Prospect Avenue, San Francisco, California 94110, USA • (415) 643-9555 • (415) 643-9554 • www.fandat.com

Fantastic Data

API: Interpreting the results

/*
 * Returns a pointer to the data associated with the result pointer.
 * If the result status is positive, this is the row data in text form.
 * If the result status is negative, this is an error message.
 * Returns 0 if there is something wrong.
 */
extern char *CacheResultMessage(void *ptr);

/*
 * Returns the number of fields in the result. Valid only if the
 * associated operation was a query.
 *
 * A negative return is an error code.
 */
extern int CacheResultNvalue(void *ptr);

/*
 * Returns the value of the specified field in the specified result
 * in text form.
 * Returns 0 if there is something wrong.
 */
extern char *CacheResultValue(void *ptr, int it);

6 Oct 00 24 207 Prospect Avenue, San Francisco, California 94110, USA • (415) 643-9555 • (415) 643-9554 • www.fandat.com

Fantastic Data

API: data field types

/*
 * Data types include:
 * integer (32 bits),
 * short (16 bits),
 * byte (8 bits),
 * char (variable length),
 * double (64 bits),
 * blob (variable length, uninterpreted binary data).
 */

6 Oct 00 25 207 Prospect Avenue, San Francisco, California 94110, USA • (415) 643-9555 • (415) 643-9554 • www.fandat.com

Fantastic Data

API: where clauses

/*
 * Conditions may be composed of any field, constants, and the operators
 *
 * +, -, *, /, &, |, !, ^, * <, <=, =, >=, >, !=.
 *
 * The absence of a WHERE clause is interpreted as whatever portion of
 * the table is maintained on the local node. This is not the same as
 * all data in the table throughout the system.
 *
 * Where clauses on queries (especially watch queries) are the major
 * determinant of data distribution filters.
 */

6 Oct 00 26 207 Prospect Avenue, San Francisco, California 94110, USA • (415) 643-9555 • (415) 643-9554 • www.fandat.com

Fantastic Data

API: special data fields

/*
 * All tables are automatically supplied with several special fields. The
 * values of these fields may not be set with insert, update, or put
 * statements, but they may be returned by queries and used in conditions.
 * The special fields are the following:
 * _b integer, the node that changed the record.
 * _s integer, the series of the record change.
 * _n integer, the sequence number of the record change.
 * _t double, the time at which the record change was originated.
 * _pb integer, the node that previously changed the record.
 * _ps integer, the series of the previous record change.
 * _pn integer, the sequence number of the previous record change.
 * _pt double, the time at which the previous record change was originated.
 * _lt double, the time at which the record change was performed on
 * the local node.
 */

6 Oct 00 27 207 Prospect Avenue, San Francisco, California 94110, USA • (415) 643-9555 • (415) 643-9554 • www.fandat.com

Fantastic Data

Common Table Definitions

• Location of nodes
create table node (id integer, latitude double, longitude double,

primary(id));
• Capabilities of nodes

create table capability (id integer, type char, …, primary(id));
• Detections

create table detection (id integer, latitude double, longitude double,
start integer, end integer, cpa integer, power double, primary(id));

• Tracks
create table track (id integer, type char, latitude double, longitude

double, confidence double, primary(id));

	Efficient Data Disseminationthrough a Storageless Web Database
	Web Database System
	Schedule
	Major focus of last period
	Determining dissemination filters
	Partition Determination
	Very near term plans
	Near term plans (next 6 months)
	Longer term plan (6 months +)
	2 potentially different filtering problems
	Clustering
	Clustering philosophy
	Automatic clustering rules
	Detection and Tracking Example
	Interface options
	Cache: How to use
	API: Communicating with the server
	API: performing an operation
	API: Statements that maintain tables
	API: Statements that change data
	API: Statements that query data
	API: Interpreting the results
	API: Interpreting the results
	API: data field types
	API: where clauses
	API: special data fields
	Common Table Definitions

